Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
E
evoprompt
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Locked files
Deploy
Releases
Package Registry
Model registry
Operate
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Grießhaber Daniel
evoprompt
Commits
c954dded
Commit
c954dded
authored
5 months ago
by
Max Kimmich
Browse files
Options
Downloads
Patches
Plain Diff
Further refactor class Task and make sure that grammar is only build if used
parent
9f5e2581
No related branches found
Branches containing commit
No related tags found
1 merge request
!7
Refactor tasks and models and fix format for various models
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
evoprompt/task/task.py
+17
-23
17 additions, 23 deletions
evoprompt/task/task.py
with
17 additions
and
23 deletions
evoprompt/task/task.py
+
17
−
23
View file @
c954dded
...
@@ -374,21 +374,17 @@ class Task(metaclass=ABCMeta):
...
@@ -374,21 +374,17 @@ class Task(metaclass=ABCMeta):
prompt_with_examples
=
self
.
build_demonstration_prompt
(
self
.
demonstration_samples
,
prompt
=
prompt
)
prompt_with_examples
=
self
.
build_demonstration_prompt
(
self
.
demonstration_samples
,
prompt
=
prompt
)
for
datum
in
dataset_iterator
:
for
datum
in
dataset_iterator
:
# build prompt for current sample
prompt_for_datum
=
self
.
build_prompt_input
(
datum
,
prompt
=
prompt_with_examples
,
use_prediction_prefix
=
self
.
model
.
_get_prediction_prefix
()
is
None
)
# input(f"Prompt for datum:\n{prompt_for_datum}")
# run prediction
# run prediction
response
,
usage
=
self
.
predict
(
prompt
=
prompt_
for_datum
,
grammar
=
self
.
_get_grammar
(
datum
)
)
response
,
usage
=
self
.
predict
(
prompt
=
prompt_
with_examples
,
datum
=
datum
)
# input
(f"Response: '{response}'")
logger
.
debug
(
f
"
Response:
'
{
response
}
'"
)
# parse response
# parse response
response
=
self
.
_parse_response
(
response
=
response
)
response
=
self
.
_parse_response
(
response
=
response
)
# input
(f"Parsed response: {response}")
logger
.
debug
(
f
"
Parsed response:
'
{
response
}
'
"
)
# evaluate response
# evaluate response
result
=
self
.
_evaluate_sample
(
response
=
response
,
datum
=
datum
)
result
=
self
.
_evaluate_sample
(
response
=
response
,
datum
=
datum
)
# input
(
logger
.
debug
(
#
f"Prediction: {response}, Gold label: {self._get_gold_label_generation_for_datum(datum)}, Result: {result}"
f
"
Prediction:
'
{
response
}
'
, Gold label:
'
{
self
.
_get_gold_label_generation_for_datum
(
datum
)
}
'
, Result:
{
result
}
"
#
)
)
results
.
append
(
result
)
results
.
append
(
result
)
current_metric
=
self
.
_aggregate_result
(
results
)
current_metric
=
self
.
_aggregate_result
(
results
)
dataset_iterator
.
set_postfix
({
self
.
metric_name
:
f
"
{
current_metric
:
.
2
f
}
"
})
dataset_iterator
.
set_postfix
({
self
.
metric_name
:
f
"
{
current_metric
:
.
2
f
}
"
})
...
@@ -405,14 +401,17 @@ class Task(metaclass=ABCMeta):
...
@@ -405,14 +401,17 @@ class Task(metaclass=ABCMeta):
return
self
.
_aggregate_result
(
results
),
evaluation_usage
,
evaluation_history
return
self
.
_aggregate_result
(
results
),
evaluation_usage
,
evaluation_history
@weave.op
()
@weave.op
()
def
predict
(
self
,
prompt
:
str
,
grammar
:
LlamaGrammar
)
->
tuple
[
str
,
ModelUsage
]:
def
predict
(
self
,
prompt
:
str
,
datum
:
DatasetDatum
)
->
tuple
[
str
,
ModelUsage
]:
# run model for inference using grammar to constrain output
# run model for inference using grammar to constrain output
# TODO grammar also depends on prompt and vice-versa -> what are good labels?
# TODO grammar also depends on prompt and vice-versa -> what are good labels?
# build prompt for current sample
prompt_for_datum
=
self
.
build_prompt_input
(
datum
,
prompt
=
prompt
,
use_prediction_prefix
=
self
.
model
.
_get_prediction_prefix
()
is
None
)
logger
.
debug
(
f
"
Prompt for datum:
\n
{
prompt_for_datum
}
"
)
response
,
_
,
_
,
usage
=
self
.
model
.
create_completion
(
response
,
_
,
_
,
usage
=
self
.
model
.
create_completion
(
system_message
=
SYSTEM_MESSAGE
,
system_message
=
SYSTEM_MESSAGE
,
prompt
=
prompt
,
prompt
=
prompt
_for_datum
,
# grammar can be applied to constrain the model output
# grammar can be applied to constrain the model output
grammar
=
grammar
if
self
.
use_grammar
else
None
,
grammar
=
self
.
_get_grammar
(
datum
)
if
self
.
use_grammar
else
None
,
# we use cached completions to speed up the process although we loose the non-deterministic behavior of LMs, but we're ok with a single result
# we use cached completions to speed up the process although we loose the non-deterministic behavior of LMs, but we're ok with a single result
use_cache
=
True
,
use_cache
=
True
,
# use less randomness, i.e., more certain outputs
# use less randomness, i.e., more certain outputs
...
@@ -451,8 +450,7 @@ class Task(metaclass=ABCMeta):
...
@@ -451,8 +450,7 @@ class Task(metaclass=ABCMeta):
def
_get_prediction_prefix
()
->
str
:
...
def
_get_prediction_prefix
()
->
str
:
...
@abstractmethod
@abstractmethod
def
_get_grammar
(
self
,
datum
:
DatasetDatum
)
->
LlamaGrammar
:
def
_get_grammar
(
self
,
datum
:
DatasetDatum
)
->
LlamaGrammar
:
...
pass
@abstractmethod
@abstractmethod
def
_evaluate_sample
(
self
,
response
:
str
,
datum
:
DatasetDatum
)
->
Any
:
...
def
_evaluate_sample
(
self
,
response
:
str
,
datum
:
DatasetDatum
)
->
Any
:
...
...
@@ -462,19 +460,15 @@ class Task(metaclass=ABCMeta):
...
@@ -462,19 +460,15 @@ class Task(metaclass=ABCMeta):
@abstractmethod
@abstractmethod
# This method is needed for the demonstration examples.
# This method is needed for the demonstration examples.
def
_get_gold_label_generation_for_datum
(
self
,
datum
:
DatasetDatum
)
->
str
:
def
_get_gold_label_generation_for_datum
(
self
,
datum
:
DatasetDatum
)
->
str
:
...
pass
@abstractmethod
@abstractmethod
def
_aggregate_result
(
self
,
results
:
list
)
->
float
:
def
_aggregate_result
(
self
,
results
:
list
)
->
float
:
...
pass
@property
@property
@abstractmethod
@abstractmethod
def
metric_name
(
self
)
->
str
:
def
metric_name
(
self
)
->
str
:
...
pass
@property
@property
@abstractmethod
@abstractmethod
def
base_prompts
(
self
)
->
list
[
str
]:
def
base_prompts
(
self
)
->
list
[
str
]:
...
pass
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment