Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
E
evoprompt
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Locked files
Deploy
Releases
Package Registry
Model registry
Operate
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Grießhaber Daniel
evoprompt
Commits
7b9808b6
Commit
7b9808b6
authored
7 months ago
by
Grießhaber Daniel
Browse files
Options
Downloads
Plain Diff
Merge branch 'remove-is-chat' into 'refactor-models'
remove is_chat argument See merge request
!2
parents
691ced52
23d528a7
No related branches found
Branches containing commit
No related tags found
2 merge requests
!2
remove is_chat argument
,
!1
Refactor models
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
evoprompt/models.py
+130
-104
130 additions, 104 deletions
evoprompt/models.py
main.py
+5
-3
5 additions, 3 deletions
main.py
with
135 additions
and
107 deletions
evoprompt/models.py
+
130
−
104
View file @
7b9808b6
import
functools
import
hashlib
import
inspect
import
json
import
logging
import
warnings
from
abc
import
ABC
,
abstractmethod
from
argparse
import
ArgumentParser
,
Namespace
from
pathlib
import
Path
from
typing
import
Any
,
Callable
,
ClassVar
import
warnings
import
llama_cpp
import
openai
...
...
@@ -19,10 +20,11 @@ logger = logging.getLogger(__name__)
logging
.
captureWarnings
(
True
)
warnings
.
simplefilter
(
"
once
"
)
ChatMessages
=
list
[
dict
[
str
,
str
]]
class
LLMModel
(
ABC
):
models
:
ClassVar
[
dict
[
str
,
type
[
"
LLMModel
"
]]]
=
{}
chat
:
bool
def
__init_subclass__
(
cls
)
->
None
:
if
inspect
.
isabstract
(
cls
):
...
...
@@ -36,26 +38,25 @@ class LLMModel(ABC):
raise
ValueError
(
"
Model %s does not exist
"
,
name
)
return
cls
.
models
[
name
](
options
=
options
,
**
kwargs
)
@functools.lru_cache
def
_compute_cache_key
(
self
,
name
,
**
kwargs
):
# we use a tuple of the model name, the options, and the kwargs as the cache key
return
(
name
,)
+
tuple
((
key
,
value
)
for
key
,
value
in
kwargs
.
items
())
def
__init__
(
self
,
options
:
Namespace
,
**
kwargs
):
self
.
usage
=
ModelUsage
()
self
.
chat
=
options
.
chat
# store kwargs for caching
self
.
options
=
options
self
.
kwargs
=
kwargs
# set up caching for model calls
self
.
_call_model_cached
=
None
if
not
options
.
disable_cache
:
cache
=
Cache
(
Path
(
"
.cache_dir
"
,
self
.
model_cache_key
))
self
.
_call_model_cached
=
cache
.
memoize
(
typed
=
True
,
ignore
=
[
0
,
"
func
"
])(
self
.
_call_model_cached
)
@cache.memoize
(
typed
=
True
,
ignore
=
[
0
,
"
func
"
])
def
_call_function
(
func
,
*
args
,
**
kwargs
):
return
func
(
*
args
,
**
kwargs
)
self
.
_call_model_cached
=
_call_function
@abstractmethod
def
create_completion
(
self
,
system_message
:
str
|
None
,
...
...
@@ -65,48 +66,10 @@ class LLMModel(ABC):
prompt_appendix
:
str
=
""
,
prompt_prefix
:
str
=
""
,
prompt_suffix
:
str
=
""
,
chat
:
bool
|
None
=
None
,
stop
:
str
=
None
,
history
:
dict
=
None
,
history
:
ChatMessages
|
None
=
None
,
**
kwargs
:
Any
,
)
->
tuple
[
str
,
ModelUsage
]:
if
chat
is
None
:
chat
=
self
.
chat
max_tokens
=
kwargs
.
pop
(
"
max_tokens
"
,
self
.
options
.
max_tokens
)
# create prompt
prompt
=
prompt_prefix
+
prompt
+
prompt_suffix
+
prompt_appendix
if
not
chat
and
system_message
:
prompt
=
system_message
+
prompt
messages
=
[
self
.
_get_user_message
(
prompt
)]
if
chat
:
# a history is prepended to the messages, and we assume that it also includes a system message, i.e., we never add a system message in this case
# TODO is it better to check for a system message in the history?
if
history
is
not
None
:
messages
=
history
+
messages
elif
system_message
:
messages
.
insert
(
0
,
self
.
_get_system_message
(
system_message
),
)
model_input
=
{
"
messages
"
:
messages
}
else
:
model_input
=
{
"
prompt
"
:
prompt
}
reponse
,
usage
=
self
.
_create_completion
(
chat
=
chat
,
**
model_input
,
stop
=
stop
,
max_tokens
=
max_tokens
,
use_cache
=
use_cache
,
**
kwargs
,
)
messages
.
append
(
self
.
_get_assistant_message
(
reponse
))
return
reponse
,
messages
,
usage
)
->
tuple
[
str
,
ModelUsage
]:
...
def
_get_user_message
(
self
,
content
:
str
):
return
{
...
...
@@ -134,18 +97,26 @@ class LLMModel(ABC):
warnings
.
warn
(
"
Caching is disabled when a grammar is provided.
"
)
use_cache
=
False
if
use_cache
:
# use cached function call
cache_key
=
self
.
_compute_cache_key
(
model_completion_fn
.
__name__
,
**
self
.
options
.
__dict__
,
**
self
.
kwargs
)
return
self
.
_call_model_cached
(
model_completion_fn
,
cache_key
,
**
kwargs
)
if
use_cache
and
self
.
_call_model_cached
is
not
None
:
return
self
.
_call_model_cached
(
model_completion_fn
,
**
kwargs
)
else
:
return
model_completion_fn
(
**
kwargs
)
def
_call_model_cached
(
self
,
func
,
cache_key
,
*
args
,
**
kwargs
):
# `cache_key` is added to the cache key (e.g., to distinguish between different models), but it is not used in the function
return
func
(
*
args
,
**
kwargs
)
@property
def
model_cache_key
(
self
):
unique_options_key
=
json
.
dumps
(
vars
(
self
.
options
),
sort_keys
=
True
,
)
+
json
.
dumps
(
self
.
kwargs
,
sort_keys
=
True
,
)
cache_key
=
(
str
(
self
.
model_name
).
replace
(
"
/
"
,
"
_
"
)
+
"
/
"
+
hashlib
.
sha1
(
unique_options_key
.
encode
()).
hexdigest
()
)
return
cache_key
@classmethod
@abstractmethod
...
...
@@ -205,34 +176,51 @@ class Llama(LLMModel):
# needs to be called after model is initialized
super
().
__init__
(
options
=
options
,
n_ctx
=
n_ctx
,
**
kwargs
)
def
create_completion
(
self
,
system_message
:
str
|
None
,
prompt
:
str
,
*
,
use_cache
:
bool
=
False
,
prompt_appendix
:
str
=
""
,
prompt_prefix
:
str
=
""
,
prompt_suffix
:
str
=
""
,
stop
:
str
=
None
,
history
:
ChatMessages
|
None
=
None
,
**
kwargs
:
Any
,
)
->
tuple
[
str
,
ModelUsage
]:
# create prompt
prompt
=
prompt_prefix
+
prompt
+
prompt_suffix
+
prompt_appendix
messages
=
[
self
.
_get_user_message
(
prompt
)]
if
system_message
is
not
None
:
prompt
=
system_message
+
prompt
reponse
,
usage
=
self
.
_create_completion
(
prompt
=
prompt
,
stop
=
stop
,
use_cache
=
use_cache
,
max_tokens
=
self
.
options
.
max_tokens
,
**
kwargs
,
)
messages
.
append
(
self
.
_get_assistant_message
(
reponse
))
return
reponse
,
messages
,
usage
def
_create_completion
(
self
,
chat
:
bool
,
use_cache
:
bool
=
False
,
**
kwargs
,
):
if
chat
:
response
=
self
.
_call_model
(
self
.
model
.
create_chat_completion
,
use_cache
=
use_cache
,
**
kwargs
,
)
response_text
=
response
[
"
choices
"
][
0
][
"
message
"
][
"
content
"
]
else
:
response
=
self
.
_call_model
(
self
.
model
.
create_completion
,
use_cache
=
use_cache
,
**
kwargs
,
)
response_text
=
response
[
"
choices
"
][
0
][
"
text
"
]
response
=
self
.
_call_model
(
self
.
model
.
create_completion
,
use_cache
=
use_cache
,
**
kwargs
,
)
response_text
=
response
[
"
choices
"
][
0
][
"
text
"
]
usage
=
ModelUsage
(
**
response
[
"
usage
"
])
return
response_text
,
usage
@property
def
model_cache_key
(
self
):
return
self
.
model_name
@classmethod
def
register_arguments
(
cls
,
parser
:
ArgumentParser
):
group
=
parser
.
add_argument_group
(
f
"
{
cls
.
__name__
}
model arguments
"
)
...
...
@@ -272,7 +260,61 @@ class Llama(LLMModel):
)
class
OpenAI
(
LLMModel
):
class
ChatModel
:
def
create_completion
(
self
,
system_message
:
str
|
None
,
prompt
:
str
,
*
,
use_cache
:
bool
=
False
,
prompt_appendix
:
str
=
""
,
prompt_prefix
:
str
=
""
,
prompt_suffix
:
str
=
""
,
stop
:
str
=
None
,
history
:
ChatMessages
|
None
=
None
,
**
kwargs
:
Any
,
)
->
tuple
[
str
,
ModelUsage
]:
# create prompt
prompt
=
prompt_prefix
+
prompt
+
prompt_suffix
+
prompt_appendix
messages
=
[
self
.
_get_user_message
(
prompt
)]
# a history is prepended to the messages, and we assume that it also includes a system message, i.e., we never add a system message in this case
# TODO is it better to check for a system message in the history?
if
history
is
None
and
system_message
:
history
=
[
self
.
_get_system_message
(
system_message
)]
reponse
,
usage
=
self
.
_create_completion
(
messages
=
messages
,
stop
=
stop
,
use_cache
=
use_cache
,
max_tokens
=
self
.
options
.
max_tokens
,
**
kwargs
,
)
messages
.
append
(
self
.
_get_assistant_message
(
reponse
))
return
reponse
,
history
+
messages
,
usage
class
LlamaChat
(
ChatModel
,
Llama
):
def
_create_completion
(
self
,
use_cache
:
bool
=
False
,
**
kwargs
,
):
response
=
self
.
_call_model
(
self
.
model
.
create_chat_completion
,
use_cache
=
use_cache
,
**
kwargs
,
)
response_text
=
response
[
"
choices
"
][
0
][
"
message
"
][
"
content
"
]
usage
=
ModelUsage
(
**
response
[
"
usage
"
])
return
response_text
,
usage
class
OpenAiChat
(
ChatModel
,
LLMModel
):
"""
Queries an OpenAI model using its API.
"""
def
__init__
(
...
...
@@ -288,34 +330,19 @@ class OpenAI(LLMModel):
def
_create_completion
(
self
,
chat
:
bool
,
use_cache
:
bool
=
False
,
**
kwargs
,
):
if
chat
:
response
=
self
.
_call_model
(
self
.
openai_client
.
chat
.
completions
.
create
,
model
=
self
.
model_name
,
use_cache
=
use_cache
,
**
kwargs
,
)
response_text
=
response
.
choices
[
0
].
message
.
content
else
:
response
=
self
.
_call_model
(
self
.
openai_client
.
completions
.
create
,
model
=
self
.
model
,
use_cache
=
use_cache
,
**
kwargs
,
)
response_text
=
response
.
choices
[
0
].
text
response
=
self
.
_call_model
(
self
.
openai_client
.
chat
.
completions
.
create
,
model
=
self
.
model_name
,
use_cache
=
use_cache
,
**
kwargs
,
)
response_text
=
response
.
choices
[
0
].
message
.
content
usage
=
ModelUsage
(
**
response
.
usage
.
__dict__
)
return
response_text
,
usage
@property
def
model_cache_key
(
self
):
return
self
.
model_name
@classmethod
def
register_arguments
(
cls
,
parser
:
ArgumentParser
):
group
=
parser
.
add_argument_group
(
"
OpenAI model arguments
"
)
...
...
@@ -339,4 +366,3 @@ argument_group.add_argument(
type
=
int
,
help
=
"
Maximum number of tokens being generated from LLM.
"
,
)
argument_group
.
add_argument
(
"
--chat
"
,
"
-c
"
,
action
=
"
store_true
"
)
This diff is collapsed.
Click to expand it.
main.py
+
5
−
3
View file @
7b9808b6
...
...
@@ -6,7 +6,7 @@ from dotenv import load_dotenv
from
evoprompt.cli
import
argument_parser
from
evoprompt.evolution
import
get_optimizer_class
from
evoprompt.models
import
Llama
,
LLMModel
from
evoprompt.models
import
Llama
,
LlamaChat
,
LLMModel
from
evoprompt.task
import
get_task
from
evoprompt.utils
import
init_rng
,
setup_console_logger
...
...
@@ -61,7 +61,7 @@ if __name__ == "__main__":
if
debug
:
logger
.
info
(
"
DEBUG mode: Do a quick run
"
)
# set up evolution model
#
#
set up evolution model
evolution_model
=
LLMModel
.
get_model
(
options
.
evolution_engine
,
options
=
options
)
match
options
.
evolution_engine
:
...
...
@@ -76,10 +76,12 @@ if __name__ == "__main__":
logger
.
info
(
"
Using Llama as the evaluation engine
"
)
evaluation_model
:
LLMModel
match
options
.
evolution_engine
:
case
"
llama
"
:
case
"
llama
"
|
"
llamachat
"
:
evaluation_model
=
evolution_model
case
"
openai
"
:
evaluation_model
=
Llama
(
options
)
case
"
openaichat
"
:
evaluation_model
=
LlamaChat
(
options
)
task
=
get_task
(
options
.
task
,
evaluation_model
,
**
options
.
__dict__
)
logger
.
info
(
f
"
Running with task
{
task
.
__class__
.
__name__
}
"
)
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment