Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
E
evoprompt
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Locked files
Deploy
Releases
Package Registry
Model registry
Operate
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Grießhaber Daniel
evoprompt
Commits
7886a510
Commit
7886a510
authored
11 months ago
by
Max Kimmich
Browse files
Options
Downloads
Patches
Plain Diff
Re-add model usage for evolution and evaluation
parent
3f29409c
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
evolution.py
+19
-7
19 additions, 7 deletions
evolution.py
optimization.py
+5
-4
5 additions, 4 deletions
optimization.py
with
24 additions
and
11 deletions
evolution.py
+
19
−
7
View file @
7886a510
...
...
@@ -2,7 +2,7 @@ from abc import abstractmethod
from
models
import
LLMModel
from
numpy.random
import
choice
from
opt_types
import
Prompt
from
opt_types
import
ModelUsage
,
Prompt
from
optimization
import
PromptOptimization
from
task
import
Task
from
tqdm
import
trange
...
...
@@ -93,9 +93,16 @@ class EvolutionAlgorithm(PromptOptimization):
self
.
population_size
=
3
num_iterations
=
2
# model usage for evaluation of prompts
total_evaluation_usage
=
ModelUsage
()
# model usage for evolution of prompts
total_evolution_usage
=
ModelUsage
()
run_directory
=
initialize_run_directory
(
self
.
evolution_model
)
initial_prompts
,
_
=
self
.
init_run
(
self
.
population_size
)
initial_prompts
,
evolution_usage
,
evaluation_usage
=
self
.
init_run
(
self
.
population_size
)
total_evaluation_usage
+=
evaluation_usage
total_evolution_usage
+=
evolution_usage
# Algorithm 1 Discrete prompt optimization: EVOPROMPT
...
...
@@ -116,14 +123,16 @@ class EvolutionAlgorithm(PromptOptimization):
# Line 4: Evolution: generate a new prompt based on the selected parent prompts by leveraging LLM to perform evolutionary operators
# p′i ←Evo(pr1,...,prk)
p_i
,
_
=
self
.
evolve
(
p_i
,
evolution_usage
=
self
.
evolve
(
pr1
,
pr2
,
prompts_current_evolution
=
prompts_current_evolution
,
current_iteration
=
i
,
)
total_evolution_usage
+=
evolution_usage
evolved_prompt
=
self
.
add_prompt
(
p_i
,
(
pr1
,
pr2
),
{
"
gen
"
:
t
})
evaluation_usage
+=
evolved_prompt
.
usage
new_evolutions
.
append
(
evolved_prompt
)
# Line 6: Update based on the evaluation scores
...
...
@@ -144,9 +153,9 @@ class EvolutionAlgorithm(PromptOptimization):
self
.
task
,
self
.
evolution_model
,
# model usage for evaluating prompts
self
.
evaluation_
model
.
usage
,
total_
evaluation_usage
,
# model usage for evolution of prompts
self
.
evolution_
model
.
usage
,
total_
evolution_usage
,
add_snapshot_dict
,
)
# Line 8: Return the best prompt, p∗, among the final population PT :
...
...
@@ -155,8 +164,11 @@ class EvolutionAlgorithm(PromptOptimization):
logger
.
info
(
f
"
Best prompt:
{
p
}
"
)
# We pick the prompt with the highest score on the development set and report its score on the testset.
test_performance
=
self
.
task
.
evaluate_test
(
p
.
content
)
logger
.
info
(
f
"
Best prompt on test set:
{
test_performance
}
"
)
test_performance
,
_
=
self
.
task
.
evaluate_test
(
p
.
content
)
logger
.
info
(
"
Best prompt on test set: %s
"
,
test_performance
)
logger
.
info
(
"
Usage (evolution model / evaluation model / total): %s / %s / %s
"
,
total_evolution_usage
,
total_evaluation_usage
,
total_evolution_usage
+
total_evaluation_usage
)
return
total_evolution_usage
,
total_evaluation_usage
class
GeneticAlgorithm
(
EvolutionAlgorithm
):
...
...
This diff is collapsed.
Click to expand it.
optimization.py
+
5
−
4
View file @
7886a510
...
...
@@ -89,9 +89,9 @@ class PromptOptimization:
def
get_prompts
(
self
,
prompt_ids
:
list
[
str
]):
return
[
self
.
get_prompt
(
p_id
)
for
p_id
in
prompt_ids
]
def
init_run
(
self
,
num_initial_prompts
:
int
)
->
tuple
[
list
[
Prompt
],
ModelUsage
]:
def
init_run
(
self
,
num_initial_prompts
:
int
)
->
tuple
[
list
[
Prompt
],
ModelUsage
,
ModelUsage
]:
# - Initial prompts P0 = {p1, p2, . . . , pN }
paraphrases
,
usage
=
paraphrase_prompts
(
paraphrases
,
paraphrase_
usage
=
paraphrase_prompts
(
self
.
evolution_model
,
self
.
task
.
base_prompt
,
n
=
num_initial_prompts
-
1
)
...
...
@@ -102,7 +102,8 @@ class PromptOptimization:
)
# accumulate usage
evaluation_usage
=
ModelUsage
()
for
prompt
in
initial_prompts
:
usage
+=
prompt
.
usage
evaluation_
usage
+=
prompt
.
usage
return
initial_prompts
,
usage
return
initial_prompts
,
paraphrase_usage
,
evaluation_
usage
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment