Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
E
evoprompt
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Locked files
Deploy
Releases
Package Registry
Model registry
Operate
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Grießhaber Daniel
evoprompt
Commits
2df18f7f
Commit
2df18f7f
authored
7 months ago
by
Grießhaber Daniel
Browse files
Options
Downloads
Patches
Plain Diff
remove is_chat argument
parent
691ced52
No related branches found
Branches containing commit
No related tags found
2 merge requests
!2
remove is_chat argument
,
!1
Refactor models
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
evoprompt/models.py
+95
-63
95 additions, 63 deletions
evoprompt/models.py
main.py
+11
-3
11 additions, 3 deletions
main.py
with
106 additions
and
66 deletions
evoprompt/models.py
+
95
−
63
View file @
2df18f7f
import
functools
import
inspect
import
logging
import
warnings
from
abc
import
ABC
,
abstractmethod
from
argparse
import
ArgumentParser
,
Namespace
from
pathlib
import
Path
from
typing
import
Any
,
Callable
,
ClassVar
import
warnings
import
llama_cpp
import
openai
...
...
@@ -22,7 +22,6 @@ warnings.simplefilter("once")
class
LLMModel
(
ABC
):
models
:
ClassVar
[
dict
[
str
,
type
[
"
LLMModel
"
]]]
=
{}
chat
:
bool
def
__init_subclass__
(
cls
)
->
None
:
if
inspect
.
isabstract
(
cls
):
...
...
@@ -43,7 +42,6 @@ class LLMModel(ABC):
def
__init__
(
self
,
options
:
Namespace
,
**
kwargs
):
self
.
usage
=
ModelUsage
()
self
.
chat
=
options
.
chat
# store kwargs for caching
self
.
options
=
options
...
...
@@ -56,6 +54,16 @@ class LLMModel(ABC):
self
.
_call_model_cached
)
@abstractmethod
def
build_model_input
(
self
,
prompt
:
str
,
system_message
:
str
|
None
,
messages
:
list
[
dict
[
str
,
str
]],
history
:
list
[
dict
[
str
,
str
]]
|
None
=
None
,
):
pass
def
create_completion
(
self
,
system_message
:
str
|
None
,
...
...
@@ -65,42 +73,18 @@ class LLMModel(ABC):
prompt_appendix
:
str
=
""
,
prompt_prefix
:
str
=
""
,
prompt_suffix
:
str
=
""
,
chat
:
bool
|
None
=
None
,
stop
:
str
=
None
,
history
:
dict
=
None
,
history
:
list
[
dict
[
str
,
str
]]
|
None
=
None
,
**
kwargs
:
Any
,
)
->
tuple
[
str
,
ModelUsage
]:
if
chat
is
None
:
chat
=
self
.
chat
max_tokens
=
kwargs
.
pop
(
"
max_tokens
"
,
self
.
options
.
max_tokens
)
)
->
tuple
[
str
,
list
[
dict
[
str
,
str
]],
ModelUsage
]:
# create prompt
prompt
=
prompt_prefix
+
prompt
+
prompt_suffix
+
prompt_appendix
if
not
chat
and
system_message
:
prompt
=
system_message
+
prompt
messages
=
[
self
.
_get_user_message
(
prompt
)]
if
chat
:
# a history is prepended to the messages, and we assume that it also includes a system message, i.e., we never add a system message in this case
# TODO is it better to check for a system message in the history?
if
history
is
not
None
:
messages
=
history
+
messages
elif
system_message
:
messages
.
insert
(
0
,
self
.
_get_system_message
(
system_message
),
)
model_input
=
{
"
messages
"
:
messages
}
else
:
model_input
=
{
"
prompt
"
:
prompt
}
model_input
=
self
.
build_model_input
(
prompt
,
system_message
,
messages
,
history
)
reponse
,
usage
=
self
.
_create_completion
(
chat
=
chat
,
**
model_input
,
stop
=
stop
,
max_tokens
=
max_tokens
,
use_cache
=
use_cache
,
**
kwargs
,
)
...
...
@@ -137,7 +121,7 @@ class LLMModel(ABC):
if
use_cache
:
# use cached function call
cache_key
=
self
.
_compute_cache_key
(
model_completion_fn
.
__name__
,
**
self
.
options
.
__dict__
,
**
self
.
kwargs
self
.
__class__
.
__name__
,
**
self
.
options
.
__dict__
,
**
self
.
kwargs
)
return
self
.
_call_model_cached
(
model_completion_fn
,
cache_key
,
**
kwargs
)
else
:
...
...
@@ -205,26 +189,29 @@ class Llama(LLMModel):
# needs to be called after model is initialized
super
().
__init__
(
options
=
options
,
n_ctx
=
n_ctx
,
**
kwargs
)
def
build_model_input
(
self
,
prompt
:
str
,
system_message
:
str
|
None
,
messages
:
list
[
dict
[
str
,
str
]],
history
:
list
[
dict
[
str
,
str
]]
|
None
=
None
,
):
if
system_message
is
not
None
:
prompt
=
system_message
+
prompt
return
{
"
prompt
"
:
prompt
}
def
_create_completion
(
self
,
chat
:
bool
,
use_cache
:
bool
=
False
,
**
kwargs
,
):
if
chat
:
response
=
self
.
_call_model
(
self
.
model
.
create_chat_completion
,
use_cache
=
use_cache
,
**
kwargs
,
)
response_text
=
response
[
"
choices
"
][
0
][
"
message
"
][
"
content
"
]
else
:
response
=
self
.
_call_model
(
self
.
model
.
create_completion
,
use_cache
=
use_cache
,
**
kwargs
,
)
response_text
=
response
[
"
choices
"
][
0
][
"
text
"
]
response
=
self
.
_call_model
(
self
.
model
.
create_completion
,
use_cache
=
use_cache
,
**
kwargs
,
)
response_text
=
response
[
"
choices
"
][
0
][
"
text
"
]
usage
=
ModelUsage
(
**
response
[
"
usage
"
])
return
response_text
,
usage
...
...
@@ -272,6 +259,43 @@ class Llama(LLMModel):
)
class
LlamaChat
(
Llama
):
def
_create_completion
(
self
,
use_cache
:
bool
=
False
,
**
kwargs
,
):
response
=
self
.
_call_model
(
self
.
model
.
create_chat_completion
,
use_cache
=
use_cache
,
**
kwargs
,
)
response_text
=
response
[
"
choices
"
][
0
][
"
message
"
][
"
content
"
]
usage
=
ModelUsage
(
**
response
[
"
usage
"
])
return
response_text
,
usage
def
build_model_input
(
self
,
prompt
:
str
,
system_message
:
str
|
None
,
messages
:
list
[
dict
[
str
,
str
]],
history
:
list
[
dict
[
str
,
str
]]
|
None
=
None
,
):
# a history is prepended to the messages, and we assume that it also includes a system message, i.e., we never add a system message in this case
# TODO is it better to check for a system message in the history?
if
history
is
not
None
:
[
messages
.
insert
(
index
,
entry
)
for
index
,
entry
in
enumerate
(
history
)]
elif
system_message
:
messages
.
insert
(
0
,
self
.
_get_system_message
(
system_message
),
)
return
{
"
messages
"
:
messages
}
class
OpenAI
(
LLMModel
):
"""
Queries an OpenAI model using its API.
"""
...
...
@@ -288,26 +312,16 @@ class OpenAI(LLMModel):
def
_create_completion
(
self
,
chat
:
bool
,
use_cache
:
bool
=
False
,
**
kwargs
,
):
if
chat
:
response
=
self
.
_call_model
(
self
.
openai_client
.
chat
.
completions
.
create
,
model
=
self
.
model_name
,
use_cache
=
use_cache
,
**
kwargs
,
)
response_text
=
response
.
choices
[
0
].
message
.
content
else
:
response
=
self
.
_call_model
(
self
.
openai_client
.
completions
.
create
,
model
=
self
.
model
,
use_cache
=
use_cache
,
**
kwargs
,
)
response_text
=
response
.
choices
[
0
].
text
response
=
self
.
_call_model
(
self
.
openai_client
.
completions
.
create
,
model
=
self
.
model
,
use_cache
=
use_cache
,
**
kwargs
,
)
response_text
=
response
.
choices
[
0
].
text
usage
=
ModelUsage
(
**
response
.
usage
.
__dict__
)
return
response_text
,
usage
...
...
@@ -322,6 +336,24 @@ class OpenAI(LLMModel):
group
.
add_argument
(
"
--openai-model
"
,
"
-m
"
,
type
=
str
,
default
=
"
gpt-3.5-turbo
"
)
def
OpenAiChat
(
OpenAI
):
def
_create_completion
(
self
,
use_cache
:
bool
=
False
,
**
kwargs
,
):
response
=
self
.
_call_model
(
self
.
openai_client
.
chat
.
completions
.
create
,
model
=
self
.
model_name
,
use_cache
=
use_cache
,
**
kwargs
,
)
response_text
=
response
.
choices
[
0
].
message
.
content
usage
=
ModelUsage
(
**
response
.
usage
.
__dict__
)
return
response_text
,
usage
argument_group
=
argument_parser
.
add_argument_group
(
"
Model arguments
"
)
argument_group
.
add_argument
(
"
--evolution-engine
"
,
...
...
This diff is collapsed.
Click to expand it.
main.py
+
11
−
3
View file @
2df18f7f
...
...
@@ -6,7 +6,7 @@ from dotenv import load_dotenv
from
evoprompt.cli
import
argument_parser
from
evoprompt.evolution
import
get_optimizer_class
from
evoprompt.models
import
Llama
,
LLMModel
from
evoprompt.models
import
Llama
,
LlamaChat
,
LLMModel
from
evoprompt.task
import
get_task
from
evoprompt.utils
import
init_rng
,
setup_console_logger
...
...
@@ -62,7 +62,12 @@ if __name__ == "__main__":
logger
.
info
(
"
DEBUG mode: Do a quick run
"
)
# set up evolution model
evolution_model
=
LLMModel
.
get_model
(
options
.
evolution_engine
,
options
=
options
)
evolution_model_name
=
(
(
options
.
evolution_engine
+
"
chat
"
)
if
options
.
chat
else
options
.
evolution_engine
)
evolution_model
=
LLMModel
.
get_model
(
evolution_model_name
,
options
=
options
)
match
options
.
evolution_engine
:
case
"
llama
"
:
...
...
@@ -79,7 +84,10 @@ if __name__ == "__main__":
case
"
llama
"
:
evaluation_model
=
evolution_model
case
"
openai
"
:
evaluation_model
=
Llama
(
options
)
if
not
options
.
chat
:
evaluation_model
=
Llama
(
options
)
else
:
evaluation_model
=
LlamaChat
(
options
)
task
=
get_task
(
options
.
task
,
evaluation_model
,
**
options
.
__dict__
)
logger
.
info
(
f
"
Running with task
{
task
.
__class__
.
__name__
}
"
)
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment